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Abstract. The objective of this paper is to improve large scale visual
object retrieval for visual place recognition. Geo-localization based on a
visual query is made difficult by plenty of non-distinctive features which
commonly occur in imagery of urban environments, such as generic mod-
ern windows, doors, cars, trees, etc. The focus of this work is to adapt
standard Hamming Embedding retrieval system to account for varying
descriptor distinctiveness. To this end, we propose a novel method for
efficiently estimating distinctiveness of all database descriptors, based on
estimating local descriptor density everywhere in the descriptor space.
In contrast to all competing methods, the (unsupervised) training time
for our method (DisLoc) is linear in the number database descriptors
and takes only a 100 seconds on a single CPU core for a 1 million image
database. Furthermore, the added memory requirements are negligible
(1%).
The method is evaluated on standard publicly available large-scale place
recognition benchmarks containing street-view imagery of Pittsburgh
and San Francisco. DisLoc is shown to outperform all baselines, while
setting the new state-of-the-art on both benchmarks. The method is
compatible with spatial reranking, which further improves recognition
results.
Finally, we also demonstrate that 7% of the least distinctive features
can be removed, therefore reducing storage requirements and improving
retrieval speed, without any loss in place recognition accuracy.

1 Introduction

We consider the problem of visual place recognition, where the goal is to build
a system which can geographically localize a query image, and do so in near
real-time. Such a system is useful for geotagging personal photos [1], mobile
augmented reality [2], robot localization [3], or to aid automatic 3D reconstruc-
tion [4].

A common approach is to cast place recognition as a visual object retrieval
problem: the query image is used to visually search a large database of geo-
tagged images [5], and highly ranked images are returned to the user as location
suggestions [6, 7, 8]. Visual retrieval is usually conducted by extracting local de-
scriptors, such as SIFT [9], quantizing them into visual words [10], and represent-
ing images as bag-of-visual-words (BoW) histograms. The BoW histograms are
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sparse because large visual vocabularies are commonly used [10, 11]. Retrieval is
then performed by computing distances between sparse BoW histograms, which
can be done efficiently by using an inverted index [10]. Many works have fur-
ther improved on this core system by using larger vocabularies [11, 12], soft-
assignment [13, 14], more accurate descriptor matching [15], enforcing geometric
consistency [10, 11, 15], or learning better descriptors [16, 17]. Further improve-
ments of retrieval systems specifically targeted at location recognition have been
made, namely removal of confusing features [6], training of per-location classi-
fiers [18, 19], and better handling of repetitive structures commonly found on
façades of modern buildings [8].

In this work we focus on improving localization performance by exploiting
distinctiveness of local descriptors – distinctive features should carry more weight
than non-distinctive features. Automatically determining which features are dis-
tinctive or not should be quite helpful in location recognition, especially in urban
environments where many features look alike (e.g. descriptors extracted from
corners of generic modern office windows are all very similar). A traditional
method for weighting features based on their distinctiveness is the inverse doc-
ument frequency (idf) weighting [10] which down-weights frequently occurring
visual words. However, this method operates purely on the visual word level,
while recent retrieval methods imply that a finer-level descriptor matching is
required for better retrieval accuracy [15, 20, 21, 22, 23, 24, 25]. Therefore, we
investigate descriptor distinctiveness on a sub-visual-word level for which we ex-
tend the Hamming Embedding (HE) approach [15, 20] (reviewed in section 2).

Our method, DisLoc (section 3), uses local density of descriptor space as a
measure of descriptor distinctiveness, i.e. descriptors which are in a densely pop-
ulated region of the descriptor space are deemed to be less distinctive (figure 1).
This approach is in line with the idf weighting [10] where frequent visual words
are deemed to be less distinctive, but, unlike idf, our method estimates descrip-
tor density on a finer level than visual words. Similar motivation is used in the
second nearest neighbour test [9] where descriptor matches are rejected if the
nearest descriptor to the query descriptor is not significantly closer than the sec-
ond nearest. This test tends to be overly aggressive as two database descriptors
can naturally be very similar due to depicting the same object; in this case the
second nearest neighbour test would reject perfectly good matches. In contrast,
our method is much softer in nature because matches are weighted based on the
local density of descriptor space, which is estimated robustly such that a few
repeated descriptors do not affect density estimates much.

1.1 Related work

Distinctiveness has been investigated in a supervised setting where [6] remove
confusing features based on their geographical distribution. In [26], only repeat-
able visual words for a particular scene are kept. Classifiers can be learnt to auto-
matically estimate visual word importance for every location [18, 19]. However,
all four methods suffer from two major problems: (1) much like idf weighting,
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(a) (b)

Fig. 1. Descriptor distinctiveness. Full circles represent database descriptors in the
descriptor space. The red and green full circles are the closest database descriptors to
the query (cyan star) and are equidistant from it. (a) The baseline Hamming Embed-
ding method treats the green and red descriptors equally due to their equal distance
from the query. (b) The red and green circles depict the local neighbourhood (radius is
equal to the distance to the third nearest neighbour) for the red and green descriptors,
respectively. DisLoc weights the green feature more because the relative distance to
the query with respect to the neighbourhood radius is smaller for the green than for
the red descriptor, implying that green is a better match.

they are limited to operate on the visual word level; and (2) they are not scal-
able enough. The four methods are impractical on a large scale as they require
querying with each image in the database: [6] does this to discover confusing
features, [18] for selecting negatives with hard-negative mining, while [19, 26]
need it for constructing the image graph [27]. Even though this processing is
only performed offline, it is still impractical as the computational complexity
is quadratic in the number of database features. For a database with millions
of images (such as the San Francisco landmarks dataset [7] used in this work),
which contains billions of local descriptors, it is unreasonable to use a method
with quadratic computational cost. For example, using each image from the
San Francisco dataset (1M images, section 4.1) to query the dataset using the
baseline retrieval method (Hamming Embedding, section 4.2) with fast spatial
verification [11] (required for all four methods), takes 2.2 days on a single core
(estimated from a random sample of 10k images). The quadratic nature of the
approaches means that for a 10M database one would need a cluster with 100
computers to work for 2.2 days. In contrast, we propose a method which is
linear in the number of database features, which takes only 100 CPU seconds
(section 3.1) to compute for the 1M image San Francisco dataset. Furthermore,
unlike [6, 18], our method is completely unsupervised.

Measures of local descriptor density have been used to improve retrieval, but
were commonly applied at the image descriptor level [28, 29, 30] (e.g. density
of BoW histograms is investigated) rather than at the level of local patch de-
scriptors (e.g. SIFT); applying these methods directly onto patch descriptors is
impossible as it would require a prohibitive amount of extra RAM. Furthermore,
all three methods are also quadratic in nature and therefore not scalable enough.
Finally, [21] exploit descriptor-space density on the patch descriptor level, but
their method suffers from two problems: (1) it is, again, quadratic in nature;
and (2) requires storing an extra floating point value per descriptor. For the
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example of the San Francisco dataset from which we extract 0.8 billion features,
assuming single-precision floats (i.e. 4 bytes), [21] would require an extra 3.3 GB
of RAM, which is a 31% increase over the baseline and our method. In contrast,
our DisLoc method is scalable as the necessary offline preprocessing is linear in
the number of database features, and only a fixed (i.e. does not increase with
database size) and negligible amount of extra memory is required (103 MB in
total).

2 Hamming embedding for object retrieval

In this section we provide a short overview of the Hamming Embedding [15]
method for large scale object retrieval, which has been shown to outperform
BoW-based methods [15, 20, 23, 24]. We will use it as our baseline (section 4.2)
and, in section 3, extend it to incorporate our descriptor distinctiveness weight-
ing.

We follow the notation and framework of Tolias et al. [24] which encapsulates
many popular retrieval methods, including bag-of-words (BoW) [10], Hamming
Embedding (HE) [15], burstiness normalization [20] and VLAD [31]. An image is
described by a set X = {x1, . . . , xn} of n local descriptors. The k-means vector
quantizer q maps a descriptor xi into a visual word ID q(xi), such that q(xi) ∈ C,
where C = {c1, . . . , ck} is the visual vocabulary of size k. Finally, Xc is a subset
of descriptors in X assigned to the visual word c, i.e. Xc = {x ∈ X : q(x) = c}.
The similarity K between two image representations X and Y is defined as:

K(X ,Y) = γ(X )γ(Y)
∑
c∈C

wcM(Xc,Yc) (1)

where γ(.) is a normalization factor, wc is a constant which depends on visual
word c, and M is a similarity defined between two sets of descriptors assigned
to the same visual word. For the case of BoW and HE, wc is typically chosen to
be the square of the inverse document frequency (idf). The normalization factor
is usually defined such that the self-similarity of an image is K(X ,X ) = 1.
For Hamming Embedding retrieval [15, 20], a B-dimensional binary signature is
stored for every database descriptor, in order to provide more accurate descriptor
matching; the signature is constructed in a LSH-like [32] manner (for more details
see [15]). The similarity function M takes the following form for the special case
of Hamming Embedding [15] with burstiness normalization [20] (assuming X
and Y are representations of the query and database images, respectively):

M(Xc,Yc) =
∑
x∈Xc

|Yc(x)|−1/2
∑
y∈Yc

f(h(bx, by)) (2)

where bx and by are binary signatures of local descriptors x and y, h is the
Hamming distance, f is a weighting function which associates weights for all
possible values of the Hamming distance, and |Yc(x)| is the number of elements
in the set Yc(x) of database descriptors that match with x:

Yc(x) = {y ∈ Yc : f(h(bx, by)) ̸= 0} (3)



DisLocation: Scalable descriptor distinctiveness for location recognition 5

Finally, the weighting function f is defined as the truncated non-normalized
Gaussian [20]:

f(h) =

{
e−h2/σ2

, h ≤ 1.5σ
0 , otherwise

(4)

where the Gaussian bandwidth parameter σ is typically chosen to be one quarter
of the number of bits B used for the binary signatures [20, 33] (e.g. a common
setting is B = 64 and σ = 16).

Discussion. Here we explain, in less formal terms, the intuition behind math-
ematical definitions presented in this section (which were adapted from [24]).
Equation (1) simply decomposes the image similarity across different visual
words, which enables efficient computation of the similarity between the query
and all database images by employing an inverted index. It also accounts for in-
verse document frequency weighting (wc), and normalizes the scores in order to
not bias the similarity towards images with a large number of descriptors (e.g. for
the BoW case, equation (1) reduces to cosine similarity between tf-idf weighted
BoW vectors). The binary signatures bx and by help perform precise matching
between the two descriptors by rejecting some false matches that a pure BoW
system would accept, at a cost of increased storage (to store the signatures)
and processing (to compute Hamming distances) requirements. This is done by
thresholding the Hamming distance in equation (4), where descriptor matches
whose Hamming distances are larger than 1.5σ are discarded, while others are
given increasing weights for decreasing distances. For comparison, a BoW sys-
tem would simply correspond to f(h) = 1 for all h. Finally, the visual burstiness
effect is countered by the burstiness normalization [20] in equation (2).

3 Scalable descriptor distinctiveness

This section proposes a method for determining descriptor distinctiveness and
incorporating it into the standard retrieval framework presented in the previ-
ous section. Apart from improving retrieval performance, there are two main
requirements: (1) the method must not have quadratic computational complex-
ity in order to be scalable to databases containing millions of images, and (2)
storage requirements should not increase drastically, i.e. no additional informa-
tion should be kept on a per-descriptor basis but only a fixed amount (i.e. not
dependant on the database size) of additional RAM can be justified. Both of
these requirements distinguish our work from previous works, a review of which
is given in section 1.1.

The key idea of our method is to estimate the local density of the descrip-
tor space around each database descriptor, and weight descriptors depending on
their distinctiveness which is inverse to the local density; we call it Local Dis-
tinctiveness (DisLoc). Figure 1 illustrates this point: given two database features
(red and green) equally distant from the query (star), it is clear that the green
one is more likely to be a correct match than the red one. This is because the
red descriptor is surrounded by many other descriptors (i.e. descriptor density is
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large, distinctiveness is small) and is therefore not distinctive, and, for example,
the second nearest neighbour test of [9] would reject the match. On the other
hand, the green descriptor is quite distinctive as there is a small concentration
of other descriptors around it, so it might be a correct match for the query.
The Hamming Embedding retrieval system (reviewed in section 2), would add
the same weight, f(h) (equation (4)), to the images from which the red and
green features came from, because h is the same for both of them. We therefore
modify the weighting function to adjust the Gaussian bandwidth based on de-
scriptor distinctiveness, i.e. we propose to make σ (equation (4)) a function of
the database descriptor. Increasing σ allows for larger Hamming distances to be
tolerated when deciding if two descriptors match, while reducing it increases the
selectivity; figure 1b illustrates this. More formally, we modify the definition of
M and f (equation (2) and (4), respectively) to incorporate σ being a function of
the local descriptor, i.e. its visual word c and binary signature b (recall that X
and Y are the representations of the query and database images, respectively):

M(Xc,Yc) =
∑
x∈Xc

|Yc(x)|−1/2
∑
y∈Yc

f(h(bx, by), c, by) (5)

f(h, c, by) =

{
e−h2/σ(c,by)

2

, h ≤ 1.5σ(c, by)
0 , otherwise

(6)

3.1 Scalable estimation of σ(c, b)

The key remaining problem is how to robustly estimate σ(c, b) for all database
descriptors, and obey our two design goals: do not incur quadratic computational
cost, nor store extra information on a per-descriptor basis (e.g. one could be
tempted to store σ(c, b) for every descriptor) thus requiring much more RAM
which is usually the limiting factor for any large scale retrieval system.

We propose to precompute and store σ(c, b) for all possible values of the
visual word c and binary signature b. However, this is impractical – there are
2B possible B-dimensional binary signatures, and for reasonably sized signa-
tures (e.g. typically B = 64) there are too many combinations to compute and
store. Therefore, we propose a small approximation – the B-dimensional binary
signature b is divided into m blocks where each of the blocks is l = B

m dimen-

sional, so that b is a concatenation of b(1), b(2), . . . , b(m). The blocks represent
subspaces of the full descriptor space and we assume, akin to Product Quanti-
zation [34], that the subspaces are relatively independent of each other, i.e. if
a descriptor is distinctive, it is also likely that it is distinctive in many of the
m subspaces. Then, σ(c, b) is approximated as the sum of σ’s in the individual
subspaces: σ(c, b) =

∑m
i=1 σi(c, b

(i)). Splitting the large B-dimensional binary
vector into several parts makes our problem manageable due to dealing with
smaller dimensional binary signatures – for each visual word c, instead of stor-
ing a table of σ(c, b) values which has 2B entries, we storem tables σi(c, b

(i)) with
2l = 2B/m values each. For a typical setting where B = 64, m = 8 and therefore
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l = 64/8 = 8 bits, the number of stored and computed elements decreases from
264 = 1.8× 1019 to 8× 28 = 2048.

The problem now becomes: for all visual words c and all signature blocks
(i.e. subspaces) s, compute and store σs(c, b

(s)) for all values of b(s). As discussed
earlier, we propose to make σs(c, b

(s)) proportional to the binary signature dis-
tinctiveness, which is inversely proportional to the local descriptor density, and
therefore proportional to the local neighbourhood size. The local neighbourhood
for a given signature can be estimated as the minimal hypersphere which con-
tains its p neighbours, the radius of this hypersphere is equal to the distance
to the p-th nearest neighbour. This strategy is illustrated in figure 1b (p = 3),
where the local neighbourhood is automatically estimated – the red descriptor’s
neighbourhood is smaller (i.e. descriptor density is larger, so it is less distinc-
tive) than the green one’s. Other measures of local neighbourhood size exist as
well, such as a softer approach of [35], but we found the overall place recog-
nition performance of our method to be robust to various neighbourhood size
definitions.

We simply make σs(c, b
(s)) equal to the local neighbourhood radius, i.e. the

Hamming distance to the p-th nearest neighbour of signature b(s) in visual word
c. The p parameter is set automatically as the average number of neighbours
across all database descriptors (in the same visual word c and subspace s) which
are closer than the default value of σdef/m, where σdef is defined as the value
from section 2, i.e. σdef = B/4 [20, 33]. In other words, if all descriptors are
uniformly distributed in the descriptor space, the estimated σ(c, b) would be
identical for all b and equal to the default σdef of the baseline Hamming Em-
bedding method (section 2).

Implementation details: σs(c, b
(s)) computation. It is simple and fast to

compute the distance to the p-th nearest neighbour for all possible values of b(s)

(remember that b(s) is l-dimensional, and l is small, with l = 8 there are only
256 different values of b(s)). For this purpose we define a lookup table ts(c, b

(s))
which stores the number of descriptors quantized to visual word c which have the
binary signature b(s) in subspace s. This table can be populated with a single pass
through the inverted index (i.e. the computational complexity is by definition
O(n), where n is the number of descriptors in the database). To compute the

distance to the p-th nearest neighbour for a particular value b
(s)
i , one can simply

use a brute force approach: go through the list of binary signatures b
(s)
j in the

non-decreasing order of hamming distance h(b
(s)
i , b

(s)
j ) and accumulate ts(c, b

(s)
j )

along the way. The traversal is terminated once the accumulated number reaches

p, signifying that h(b
(s)
i , b

(s)
j ) is the distance of the p-th nearest neighbour.

Implementation details: normalization. We make sure that on average
σ(c, b) is the same as the default σdef so that no bias is introduced, such as
consistently under/overestimating σ(c, b) which by coincidence might work bet-
ter for a particular benchmark. We therefore normalize σ(c, b) by subtracting
the mean over all Xc and adding σdef . Therefore, the final estimate of σ(c, b) is
computed as σfinal(c, b) = vc+σ(c, b) = vc+

∑m
i=1 σi(c, b

(i)), where vc = σdef −
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meanx∈Xc(σ(c, bx)); it is clear that this ensures that meanx∈Xc(σfinal(c, bx)) =
σdef . In order to be able to conduct the normalization at run-time, a single extra
floating point number, vc, needs to be stored for every visual word c.

Computational speed. As mentioned earlier, the table ts(c, b
(s)
i ) can be pop-

ulated with a single pass over all database descriptors, which is O(n), where n
is their count. The brute force search for the p-th nearest neighbour distance is
O(2l × 2l) = O(22l) so this part of the algorithm is independent of the database
size as l is a constant.

On a single core (i5 3.30 GHz), the entire computation takes only 100 seconds
for the San Francisco dataset (section 4.1) which contains 1M images and 0.8
billion local features. Furthermore, even though there is no real need for speed-
ing it up as 100 seconds for a one off preprocessing task is very efficient, the
algorithm is easily parallelizable as the computations are performed completely
independently for all visual words c and subspaces s.

Storage requirements. For every visual word c, at runtime one needs to have
access to vc (a single precision floating point number, 4 bytes) and m (typically
equal to 8) lookup tables σs(c, b

(s)), which contain 2l (typically equal to 28 = 256)
values. The σs(c, b

(s)) values can only take integer numbers from 0 to l as they
are the only possible Hamming distances for l-length binary signatures. However,
for our parameter settings we observe that all obtained values are between 1 and
4, therefore only 2 bits are needed to encode them. The total number of bits
for storing all necessary information, for visual vocabulary size k, is therefore:
k × (32 + 2×m× 2l), which for our parameter settings k = 200k, m = 8, l = 8
equals 103 MB. Note that no information is stored on a per-feature basis, i.e. for
any size dataset, comprising of potentially millions of images, one only requires
103 MB of extra storage, which is negligible. On the other hand, the method
of [21] requires storing a floating point number for every database feature, which
for 0.8 billion features of the San Francisco dataset (section 4.1) would require
extra 3.3 GB of RAM. This is a 31% increase in baseline’s storage needs; in
contrast, our method increases storage requirements by less than 1%.

3.2 Removal of unhelpful features

Up to this point we have shown how to compute distinctiveness of every de-
scriptor in the database – larger σ(c, b) corresponds to larger distinctiveness. We
note that very non-distinctive features are not useful for retrieval or place recog-
nition, as (1) they don’t convey much information, and (2) it is unlikely that
query features will match to them as the adapted Gaussian bandwidth σ(c, b)
is quite tight. Therefore, we propose to investigate removing non-distinctive de-
scriptors, namely, to remove all descriptors from the database whose σ(c, b) is
below a certain threshold. Experimental results (section 4.3) indeed show that
7% of features can be removed safely without any degradation in place recogni-
tion performance, while 24% of features can be removed in exchange for a small
reduction in recognition performance. The removal of features directly translates
to reduced storage and RAM requirements, as well as place recognition speedup.
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4 Experimental setup and recognition results

4.1 Datasets and evaluation procedure

Location recognition performance is evaluated on two standard large scale datasets
containing street-view images of Pittsburgh [8] and San Francisco [7].

Pittsburgh [8]. The dataset contains 254k perspective images generated from
10.6k Google Street View panoramas of Pittsburgh downloaded from the inter-
net. There are 24k query images generated from 1k panoramas taken from an in-
dependent dataset, Google Pittsburgh Research Dataset, which has been created
at a different time. We follow the evaluation protocol of [8] where ground truth
is generated automatically by using the provided GPS coordinates; a database
image is deemed as a positive if it is within 25 meters from the query image.
It should be noted that a perfect location recognition score is unachievable as
some queries (1.2%) do not have any positives (as all database images are fur-
ther away than 25 meters), some positives are not within 25 meters due to GPS
inaccuracies ([8] reports GPS accuracy to be between 7 and 15 meters), and the
construction of the ground truth does not take into account occlusions which
can occur due to large camera displacements.

San Francisco landmarks [7]. The dataset contains 1.06 million perspective
images generated from 150k panoramas of San Francisco, while the query set
contains 803 images taken at different times using mobile phones. Ground truth
is provided in terms of building IDs which appear in the query and database
images; as in [7, 8], positives for a particular query are all database images
which contain a query building.

There are two versions of the ground truth provided by the database authors
– the original April 2011 version used by [7, 8], and an updated April 2014
version which contains fixes but has not been used in a paper yet due to its
recency. Unless otherwise stated, we report results on the latest ground truth
version (April 2014), while when comparing to previous methods [7, 8] we use
the same version as them (the first version from April 2011) in order to be fair.

Finally, it should be noted that there are still some problems with the ground
truth – 6.5% queries do not contain any positives making the maximal obtainable
location recognition score to be 93.5%. Furthermore, we have encountered a few
more ground truth errors, such as cases where the side of the building imaged
in a query is not visible in any of the database images of the same building.

Evaluation measure. Localization performance is evaluated in the same way
for the two datasets, as defined by their respective authors [7, 8], as recall at
N retrievals. Namely, a query is deemed to be correctly localized if at least one
positive image is retrieved within the topN positions. We use two types of graphs
to visualize the performance: (1) recall@N : recall as a function of the number
of top N retrievals; and (2) rank-gain@N : relative decrease in the number of
required top retrievals such that the recall is the same as the baseline method at
N retrievals. An example of a rank-gain@N curve is figure 2d, where our method,
DisLoc, achieves 33.3% at N = 30, which means that 33.3% less retrievals were
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needed for DisLoc to achieve the same recall as the baseline achieves at N = 30
(i.e. DisLoc only needs to return 20 images).

4.2 Baseline

We have implemented a baseline retrieval system based on the Hamming Em-
bedding [15] with burstiness normalization [20], details of which are discussed
in section 2. We extract upright RootSIFT [36] descriptors from Hessian-Affine
interest points [37], and quantize them into 200k visual words. To alleviate quan-
tization errors, multiple assignment [13] to five nearest visual words is performed,
but in order not to increase memory requirements this is done on query features
only, as in [14]. A 64-bit Hamming Embedding (HE) [15] signature is stored
together with each feature in order to improve feature matching precision. The
visual vocabulary and Hamming Embedding parameters are all trained on a
random subsample of features from the respective datasets.

As shown in figure 4, our baseline (HE) already sets the state of the art on
both datasets, and by a large margin. For example, on the Pittsburgh benchmark
at N = 10 the baseline gets 77.3% while the best previous result (Adaptive
weights [8]) achieves 61.5%. The superior performance of the baseline can be
explained by the fact that Hamming Embedding with burstiness normalization
has been shown to outperform bag-of-words methods due to increased feature
matching precision [15, 20, 23, 33].

4.3 Results

Unless otherwise stated, none of the following experiments performs spatial
reranking [11] as our aim is to improve the performance of the core retrieval
system. Spatial reranking or any other postprocessing technique [29, 33, 38, 39]
can be applied on top of our method, and we show results for spatial reranking
later in section 4.4.

Note that the Pittsburgh benchmark contains many more query images than
San Francisco (24k compared to 803), which explains why the Pittsburgh per-
formance graphs are smoother and differences between methods are easier to see
(large number of query images implies performance differences are statistically
significant).

Figure 2 shows the performance of our DisLoc method compared to the
Hamming Embedding baseline. DisLoc clearly outperforms the baseline on both
benchmarks and at all sizes of retrieved lists. For example, for the San Francisco
dataset DisLoc achieves a rank-gain of 37.5% at N = 80, namely DisLoc only
needs to retrieve 50 images in order to achieve the same recall (87.2%) as the
baseline obtains with 80 retrievals. This directly corresponds to a more user-
friendly system as a much shorter list of suggestions has to be shown to a user
in order to achieve the same success rate. Rank-gain is consistently larger than
20% for all N on both benchmarks.

We also investigate if the baseline’s performance can be improved by tweaking
the σ parameter; figure 2 also shows the results of these experiments. The default
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Fig. 2. Localization performance evaluation.DisLoc always outperforms the base-
line by a large margin. It also outperforms various settings of the baseline’s σ parameter.

parameter value σ = 16 [20, 33] indeed performs the best with the performance
being relatively stable in the range between 14 and 18. DisLoc outperforms all
baselines regardless of the tweaked σ, further proving its superiority.

Figure 3 shows some qualitative examples of place recognition, where Dis-
Loc outperforms the baseline due to successful estimation of distinctive vs non-
distinctive features.

Comparison with state of the art. As noted in section 4.2, our Hamming
Embedding baseline already advances the new state of the art on both bench-
marks (figure 4). Since DisLoc consistently outperforms this baseline, it sets the
new state of the art for both datasets. The best competitor is the Adaptive
weights method [8] which discovers repetitive structures in an image and uses
them to perform a more natural soft assignment of local descriptors. The pa-
per [8] also tests several baselines (included in figure 4) such as Fisher Vectors
(FV), tf-idf, etc. DisLoc consistently beats all existing methods, for example, on
the Pittsburgh dataset at N = 10 DisLoc achieves 78.7% while the best competi-
tor, Adaptive weights [8], gets 61.5%. Furthermore, the recall at N = 50 when
the performance of all methods starts to saturate is also much larger – 87.4%
compared to 73%. DisLoc with only top 3 retrievals achieves a better recall than
Adaptive weights at 25 and 50 retrievals for the Pittsburgh and San Francisco
benchmarks, respectively.

Removal of unhelpful features. Figure 5 shows the effects of removing non-
distinctive features, i.e. all features whose σ is estimated to be below a threshold
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(a) (b) (c) (d) (e)

Fig. 3. Qualitative examples from the Pittsburgh benchmark. Each column
shows one example, the query image is shown in the top row, and the first results
returned by DisLoc and the baseline are shown in the middle and bottom rows, respec-
tively. The baseline is often confused by non-distinctive features coming from traffic
signs (a), cars (b), windows (c-d), and various repetitive structures (e). DisLoc often
successfully overcomes these problems.
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Fig. 4. Comparison with state of the art. The two graphs are taken from [8] and
amended with our Hamming Embedding baseline and the DisLoc method. For the San
Francisco dataset and this figure only, we use the April 2011 version of the ground
truth for fair comparison with [7, 8], as explained in section 4.1.

are removed. It can be seen that removing 7% of features doesn’t change the
localization performance, while quite good performance is maintained after re-
moving 24% of the features. Removing 50% of features makes the system work
worse than the baseline for N < 55. Therefore, without compromising localiza-
tion quality one can save 7% of storage/RAM while simultaneously increasing
localization speed (as the posting lists get shorter due to a smaller number of
features). With a small decrease in localization performance, a 24% saving in
storage is obtainable. We have observed similar trends on the San Francisco
benchmark as well.
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Fig. 5. Removal of unhelpful features. Keeping only features for which DisLoc
assigns σ larger than 14, 15 and 16 reduces storage/RAM requirements by 7%, 24%
and 50%. Random removal or stop-word removal of 25% of features combined with the
baseline method works much worse than the DisLoc competitors.

We compare the DisLoc-based feature removal method with two additional
baselines which don’t use automatic distinctiveness estimation: (1) random re-
moval: discards 25% of the features randomly (i.e. no selection criterion is used);
and (2) stop-list [10]: removes 25% of the features by discarding the most fre-
quent visual words. Both strategies perform poorly (figure 5) compared to the
DisLoc alternative – with the same number of removed features (25%) DisLoc
outperforms the two baselines with a large margin. Even with 50% of the fea-
tures removed, the DisLoc method significantly outperforms random removal for
N > 4, as well as stop-list for N > 25.

4.4 Pushing the localization performance further

In this section we evaluate using postprocessing methods to further increase
place recognition performance.

Spatial reranking. We use the standard fast spatial reranking method of [11]
where the top 200 images are checked for spatial consistency with the query, us-
ing an affine transformation with verticality constraint. As expected, the method
increases precision (figure 6) reflected in the increased recall at small N . For the
San Francisco benchmark, DisLoc without spatial reranking beats the baseline
with spatial reranking. Our method, DisLoc, continues to outperform the base-
line method after spatial reranking on both benchmarks.

Unique landmark suggestions. In real-world location recognition, retrieval
results should be processed to improve user experience. Namely, it would be
frustrating for a user if a place recognition system provides the same wrong
answer multiple times. Simple diversification of results alleviates this problem
and prevents the user from being buried with false retrievals.

For the San Francisco dataset where building IDs are known for every database
image, one can simply avoid returning the same building ID more than once, i.e.
only the first instance of a building ID is kept. For the Pittsburgh dataset there
is no building ID meta data available, but GPS coordinates of all database im-
ages are known. We therefore tessellate Pittsburgh into 25-by-25 meter squares
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Fig. 6. Postprocessing performance evaluation. The “+sp” suffix signifies that
spatial reranking is performed (on top 200 images), the “+uniq” suffix signifies that
unique landmark suggestions are returned to the user. DisLoc continues to outperform
the baseline after spatial reranking. For the San Francisco benchmark, DisLoc without
spatial reranking outperforms the baseline with spatial reranking. Returning unique
landmarks further improves the place recognition performance.

and only return the top ranked images from each square. For datasets which do
not contain any meta information, a vision-based diversification approach can
be used, such as [19, 40, 41].

As expected, the proposed diversification approach further improves location
recognition performance (figure 6).

5 Conclusions

DisLoc has been shown to consistently outperform the baseline Hamming Em-
bedding system on standard place recognition benchmarks: Pittsburgh and San
Francisco landmarks, containing street-view images of those cities. Furthermore,
DisLoc sets the state-of-the-art for both benchmarks by a large margin. Stan-
dard post-processing methods such as spatial reranking and result diversification
have been shown to be compatible with DisLoc, and to further improve its per-
formance. Furthermore, non-distinctive local descriptors can be discarded from
the inverted index, therefore lowering memory requirements by 7%-24% and
speeding up the system.
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[36] Arandjelović, R., Zisserman, A.: Three things everyone should know to
improve object retrieval. In: Proc. CVPR. (2012)

[37] Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detec-
tors. IJCV 1 (2004) 63–86

[38] Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Auto-
matic query expansion with a generative feature model for object retrieval.
In: Proc. ICCV. (2007)

[39] Chum, O., Mikulik, A., Perďoch, M., Matas, J.: Total recall II: Query
expansion revisited. In: Proc. CVPR. (2011)



DisLocation: Scalable descriptor distinctiveness for location recognition 17

[40] Kennedy, L., Naaman, M.: Generating diverse and representative image
search results for landmarks. In: Proc. World Wide Web. (2008)

[41] van Leuken, R.H., Garcia, L., Olivares, X., van Zwol, R.: Visual diversifi-
cation of image search results. In: Proc. World Wide Web. (2009)


